Traffic Flow Condition Classification for Short Sections Using Single Microwave Sensor
نویسندگان
چکیده
Daily observed traffic flow can show different characteristics varying with the times of the day. They are caused by traffic incidents such as accidents, disabled cars, construction activities and other unusual events. Three different major traffic conditions can be occurred: “Flow,” “Dense” and “Congested”. Objective of this research is to identify the current traffic condition by examining the traffic measurement parameters. The earlier researches have dealt only with speed and volume by ignoring occupancy. In our study, the occupancy is another important parameter of classification. The previous works have used multiple sensors to classify traffic condition whereas our work uses only single microwave sensor. We have extended Multiple Linear Regression classification with our new approach of Estimating with Error Prediction. We present novel algorithms of Multiclassification with One-Against-All Method and Multiclassification with Binary Comparison for multiple SVM architecture. Finaly, a non-linear model of backpropagation neural network is introduced for classification. This combination has not been reported on previous studies. Training data are obtained from the Corsim based microscopic traffic simulator TSIS 5.1. All performances are compared using this data set. Our methods are currently installed and running at traffic management center of 2.Ring Road in Istanbul.
منابع مشابه
Traffic Condition Detection in Freeway by using Autocorrelation of Density and Flow
Traffic conditions vary over time, and therefore, traffic behavior should be modeled as a stochastic process. In this study, a probabilistic approach utilizing Autocorrelation is proposed to model the stochastic variation of traffic conditions, and subsequently, predict the traffic conditions. Using autocorrelation of the time series samples of density and flow which are collected from segments...
متن کاملTraffic Prediction Based on Correlation of Road Sections
Road section data packet is very necessary for the estimation and prediction in short-time traffic condition. However, previous researches on this problem are lack of quantitative analysis. A section correlation analyzing method with traffic flow microwave data is proposed for this problem. It is based on the metric multidimensional scaling theory. With a dissimilarity matrix, scalar product ma...
متن کاملVehicular Ad Hoc Networks
With vehicular ad hoc networks gaining an ever-increasing interest to serve a diverse variety of applications in today’s intelligent transportation systems, it was not at all surprising for the guest editorial team to receive a handful of submissions for this special issue addressing different aspects and test-beds of vehicular networks. In sum, 8 papers were accepted to be published in the spe...
متن کاملFuzzy Based Traffic Congestion Detection & Pattern Analysis Using Inductive loop sensor
For an Intelligent Transportation System (ITS), Accurate and real time measurement of traffic parameters such as type and number of vehicles, their individual speeds and overall flow pattern are essential to successfully implemented and thus enable optimal utility of existing roadways. For the accurate measurement of such traffic parameters, an efficient vehicle detector is essential. The senso...
متن کاملBehavioral Analysis of Traffic Flow for an Effective Network Traffic Identification
Fast and accurate network traffic identification is becoming essential for network management, high quality of service control and early detection of network traffic abnormalities. Techniques based on statistical features of packet flows have recently become popular for network classification due to the limitations of traditional port and payload based methods. In this paper, we propose a metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010